Curve Fitting with Polynomial Models

Who uses this?

Market analysts can use curve fitting to predict the performance of a stock index. (See Example 3.)

Lesson Objective(s):

- Use finite differences to determine the degree of a polynomial that will fit a given set of data.
- Use technology to find polynomial models for a given set of data.

The table shows the closing value of a stock index on the first day of trading for various years.

Year	1994	1995	1996	1997	2000	2001	2003	2004
Price (\$)	774	751	1053	1293	4186	2474	1347	2011

To create a mathematical model for the data, you will need to determine what type of function is most appropriate. You have learned that a set of data that has constant second differences can be modeled by a quadratic function. Finite differences can be used to identify the degree of any polynomial data. $(2) = \omega + \omega + \omega + \omega + \omega = 0$

Finite Differences of Polynomials				
Function Type	Degree	Constant Finite Differences		
Linear	1	first difference		
Quadratic	2	second difference		
Cubic	3	third difference		
Quartic	7	fourth difference		
Quintic	5	fifth difference		

Using Finite Differences to Determine Degree

Use finite differences to determine the degree of the polynomial that best describes the data.

影響。	2	4	0	4	3	3
A		-1	U		2	
y	-10	-4	-1.4	0	2.4	8
			.6 +1.			.6
			-1.2			
	Contract of the Contract of th		ر ا ر	and the same of	1000	
		_	2 +2			
			2 2	. 2	2.7	

first difference second difference third difference

cubic

Use finite differences to determine the degree of the polynomial that best describes the data.

first difference Second difference third difference fourth difference

quartic

① STAT 1: Edit
② Enter numbers in L1 and L2
③ STAT → CALC 4: LinReg 5: QuadReg
6: Cubic Reg 7: Quart Reg Once you have determined the degree of the polynomial that best describes the data, you can use your calculator to create the function.

turn on Diagnostics!

EXAMPLE

Using Finite Differences to Write a Function

The table below shows the population of a city from 1950 to 2000. Write a polynomial function for the data. years since 1950

Year Population (thousands)	1950	1960	1970	1980	1990	2000
Denulation (thousands)	2853	4011	5065	6720	9704	14,759

Lin = 0.8996695 Quad = 0.99025847

Cub = 0.99999994

Quar = 0.9999999 => best model

$$.000077x^{4} + 0.1132x^{3} - 3.974x^{2} + 144.163x + 2852.964$$

Often, real-world data can be too irregular for you to use finite differences or find a polynomial function that fits perfectly. In these situations, you can use the regression feature of your graphing calculator. Remember that the closer the R²-value is to 1, the better the function fits the data.

EXAMPLE

Finance Application

The table shows the opening value of a stock index on the first day of trading in various years. Use a polynomial model to estimate the value on the first day of trading in 2002.

Lin = 0.256404 Quad = 0.5516815 Cub = 0.627856 Quar = 0.8431598

years since 1990

Year	Price (\$)	Year	Price (\$)
1994	774	2000	4186
1995	751	2001	2474
1996	1053	3 2003	1347
1997	1293	2004	2011

$$9.2688x^{4} - 339.8626x^{3} + 4356.7626x^{2}$$

 $-22616.0956x + 41134.163$