# **Factoring Polynomials**

Factor: 
$$x^2 - 7x + 12$$
 multiply to 6

 $(x-4)(x-3)$  add to b

 $(x-4)(x-3)$ 

#### Who uses this?

Ecologists may use factoring polynomials to determine when species might become extinct. (See Example 4.)

#### Lesson Objective(s):

- Use the Factor Theorem to determine factors of a polynomial.
- Factor the sum and difference of two cubes.

Recall that if a number is divided by any of its factors, the remainder is 0.

Likewise, if a polynomial is divided by any of its factors, the remainder is 0.

The Remainder Theorem states that if a polynomial is divided by (x - a), the remainder is the value of the function at a. So, if (x - a) is a factor of P(x), then P(a) = 0.



-3-4

# Factor Theorem

THEOREM EXAMPLE

(X-a) is a factor If

the remainder is ZERO

- 1) use long or synthetic division to find the remainder
- 2 remainder = 0, YES (x-a) is a factor remainder  $\neq 0$ , NO (x-a) is not a factor

#### **Determining Whether a Linear Binomial is a Factor**

Determine whether the given binomial is a factor of the polynomial P(x).

(x-3); 
$$P(x) = x^2 + 2x - 3$$
  
(X)(X)

B 
$$(x+4)$$
;  $P(x) = 2x^4 + 8x^3 + 2x + 8$ 

no; 
$$(x-3)$$
 is not a factor of  $P(x)$ 

$$C(x-3)$$
;  $P(x) = 4x^{6}-12x^{5}+2x^{3}-6x^{2}-5x+10$ 

no; 
$$(x-3)$$
 is not a factor of  $P(x)$ 

You are already familiar with methods for factoring quadratic expressions. You can factor polynomials of higher degrees using many of the same methods you previously learned.

#### EXAMPLE 2

### **Factoring by Grouping**

Factor 
$$x^3 + 3x^2 - 4x - 12$$
.

$$X^{2}(X+3)-4(X+3)$$

$$(x+2)(x-2)(x+3)$$

3 Combine terms on the outside t inside

$$a^2 - b^2 = (a+b)(a-b)$$

B 
$$3x^3 + x^2 - 27x - 9$$
  
 $x^2(3x+1) - 9(3x+1)$ 

$$(x^2-9)(3x+1)$$

$$(x + 3)(x - 3)(3x + 1)$$

You are already familiar with methods for factoring quadratic expressions. You can factor polynomials of higher degrees using many of the same methods you previously learned.

#### EXAMPLE 2

#### **Factoring by Grouping**

Factor 
$$x^3 + 3x^2 - 4x - 12$$
.

$$X^{2}(x+3)-4(x+3)$$

$$(x+2)(x-2)(x+3)$$

3 Combine terms on the outside t

$$a^2-b^2=(a+b)(a-b)$$

B 
$$3x^3 + x^2 - 27x - 9$$
  
 $x^2(3x+1) - 9(3x+1)$   
 $(x^2 - 9)(3x+1)$   
 $(x+3)(x-3)(3x+1)$ 

Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.

## Factoring the Sum and the Difference of Two Cubes

| METHOD                  | ALGEBRA                             | ) lave to estrogense, es |
|-------------------------|-------------------------------------|--------------------------|
| Sum of two cubes        | $a^3 + b^3 = (a+b)(a^2 - ab + b^3)$ | 2)                       |
| Difference of two cubes | $a^3-b^3=(a-b)(a^2+ab+b^2)$         |                          |

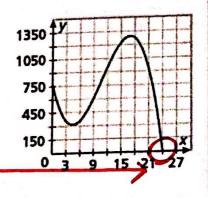
#### EXAMPLE 3

**Factoring the Sum or Difference of Two Cubes** 

Factor each expression.

$$\begin{array}{c}
A & 5x^4 + 40x & GCF: 5x \\
5x(x^3 + 8) & \\
a^3 + b^3 = (a+b)(a^2 - ab + b^2) \\
3\sqrt{x^3} = x = a \\
5x(x+2)(x^2 - 2x + 4) \\
3\sqrt{8} = 2 = b
\end{array}$$

B 
$$8y^3 - 27$$
  
 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ 


$$\sqrt[3]{8y^3} = 2y = a$$
  $(2y-3)(4y^2 + 6y + 9)$   
 $\sqrt[3]{27} = 3 = b$ 

You can also use a graph to help you factor a polynomial. Recall that the real zeros of a function appear as x-intercepts on its graph. By the Factor Theorem, if you can determine the zeros of a polynomial function from its graph, you can determine the corresponding factors of the polynomial.

# EXAMPLE 4

#### **Ecology Application**

The population of an endangered species of bird in the years since 1990 can be modeled by the function  $P(x) = -x^3 + 32x^2 - 224x + 768$ . Identify the year that the bird will become extinct if the model is accurate and no protective measures are taken. Use the graph to factor P(x).



factor: (x-24)